6 Influência da Interação Rocha-Fluido na Estabilidade de Poços: Simulações

6.1. Introdução

As simulações executadas têm como objetivo esclarecer o efeito da interação físico-química da rocha com o fluido de perfuração na estabilidade de poços ao longo do tempo. As condições adotadas pretendem reproduzir casos encontrados na prática, usando para o folhelho dados representativos para o material descrito nos capítulos anteriores.

Levando em conta os resultados obtidos na modelagem unidimensional, o FPORO 3D foi utilizado para simular as variações da tensão, pressão de poros, deslocamentos e nível de plastificação ao redor do poço, obtidas da invasão de fluido de perfuração. Em primeiro lugar, são apresentados os casos simulados considerando o poço vertical com geometria e estado de tensão simples, para comprovar gradualmente a consistência dos resultados obtidos com o fundamento teórico estudado. O cenário de um poço vertical, com pressão do fluido de perfuração igual à pressão de poros inicial e sem concentração de sal nestes fluidos, foi o caso analisado inicialmente (Caso I). Depois, estabelecendo uma concentração de sal do fluido de perfuração e mantendo nula a diferença de pressão ($\Delta P = Pw - P_o = 0$), foi estudado o efeito do mecanismo de transporte devido à diferença de atividade química (Caso II).

Conservando a geometria anterior, foi simulada uma perfuração sobrebalanceada, com as atividades do fluido de perfuração e do fluido nos poros iguais, para verificar o efeito da pressão do fluido de perfuração na dissipação da pressão de poros (Caso III). Depois foi adicionada uma concentração no fluido de perfuração, variando o coeficiente de reflexão, para perceber o efeito membrana na mudança das condições ao redor do poço sob estado de tensão isotrópico (Caso IV). O poço submetido a tensões horizontais diferentes também foi analisado para o modelo descrito anteriormente (Caso V). No Caso VI, as consequências da variação da concentração salina do fluido de perfuração foram avaliadas mantendo o valor do coeficiente de reflexão constante e para uma isotropia de tensões.

A análise da influência do coeficiente de reflexão, para o cenário de um poço inclinado sob tensões horizontais diferentes, foi tratada no Caso VII. A mesma geometria e estado de tensões foi aplicada para analisar o efeito da concentração do sal do fluido de perfuração ao redor do poço (Caso VIII).

No total foram efetuadas 38 simulações, cujos resultados são apresentados através de curvas que mostram a mudança do estado de tensões, pressão de poros, deslocamento radial e nível de plastificação do poço ao longo do tempo. A Tabela 6. 1 apresenta os diferentes casos simulados e os dados de estado de tensões *in situ*, gradiente químico, concentração (percentagem em peso), viscosidade do fluido de perfuração e o coeficiente de reflexão utilizados para cada simulação. Nesta fase, é adotada a convenção de sinais da geomecânica, onde tensões de compressão são assumidas como positivas. Em geral, o tempo de simulação variou entre 3 e 6 dias.

	Caso	P	$P_a = P_w$ Ati		Atividade σ _H	Ծե	σ.	С		
Poço		(MPa)	(MPa)	Ouímica	(MPa)	(MPa)	(MPa)	(% CaCb)	μ _w (cp)	$\alpha = r.n_i$
		(1.11 %)	(1/11 %)		(1)11 (1)	(1/11 #)	(1011 #)	(/*************************************		
Vertical	Ι	15	15	$a_o = a_w$	30	30	33	-	1,00	-
	II	15	15	$a_o > a_w$	30	30	33	35,0	1,90	0,01
	III	15	20	$a_o = a_w$	30	30	33	-	1,00	-
	IV	15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,01
	-	15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,02
		15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,05
		15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,10
	-	15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,20
		15	20	$a_o > a_w$	30	30	33	35,0	1,90	0,50
	V	15	20	$a_o = a_w$	33	30	35	-	1,00	-
		15	20	$a_o > a_w$	33	30	35	35,0	1,90	0,01
	_	15	20	$a_o > a_w$	33	30	35	35,0	1,90	0,05
	_	15	20	$a_o > a_w$	33	30	35	35,0	1,90	0,10
	-	20	22	$a_o = a_w$	30	30	35	-	1,0	-
	VI	20	22	$a_o > a_w$	30	30	35	20,0	1,00	0,01
	-	20	22	$a_o > a_w$	30	30	35	21,0	1,04	0,01
	-	20	22	$a_o > a_w$	30	30	35	22,0	1,08	0,01
	-	20	22	$a_o > a_w$	30	30	35	25,0	1,20	0,01
	-	20	22	$a_o > a_w$	30	30	35	30,0	1,52	0,01
		20	22	$a_o > a_w$	30	30	35	35,0	1,90	0,01
Inclinado	VII	15	25	$a_o = a_w$	33	30	35	-	1,00	-
	-	15	25	$a_o > a_w$	33	30	35	35,0	1,90	0,01
	-	15	25	$a_o > a_w$	33	30	35	35,0	1,90	0,1
	-	15	25	$a_o > a_w$	33	30	35	35,0	1,90	0,2
	-	15	25	$a_o > a_w$	33	30	35	35,0	1,90	0,5
	VIII	15	25	$a_o = a_w$	33	30	35	-	1,00	-
	-	15	25	$a_o > a_w$	33	30	35	5,0	0,68	0,01
	-	15	25	$a_o > a_w$	33	30	35	10,0	0,76	0,01
	-	15	25	$a_o > a_w$	33	30	35	20,0	1,00	0,01
	-	15	25	$a_o > a_w$	33	30	35	30,0	1,52	0,01
	-	15	25	$a_o > a_w$	33	30	35	35,0	1,90	0,01
	-	15	25	$a_o > a_w$	33	30	35	40,0	2,44	0,01

Tabela 6. 1 – Descrição geral dos casos analisados

Considerando o folhelho como a rocha em estudo, situações envolvendo os parâmetros em função da composição e profundidade em que ela se encontra foram modeladas. As propriedades do material, fluido nos poros, fluido de perfuração e os dados utilizados como base para todas as simulações aparecem na Tabela 6. 2.

Fluido		Módulo compress. do fluido (K_f)	MPa	3300
dos poros		Viscosidade	cp	1,0
Material	Propriedades	Módulo de Young (E)	MPa	1850
	drenadas	Poisson (v)		0,22
	Propriedades de	Compressão	MPa	50
	resistência	Tração	MPa	5
		Ângulo de atrito (ϕ)	(0)	30
		Ângulo de dilatância (ψ)	(0)	15
		Módulo de rigidez dos grãos (K_s)	MPa	36000
		Porosidade (ŋ)		0,3
Poço		Raio (a)	m	0,127
Consolidação		C _v	m ² /s	1,804E-08
		k	mDarcy	1,0E-05
Dados	Tipo de solução	CaCl ₂		
físico-	Massa molar	Solvente (água)	Kg/mol	0,01802
químicos		Soluto	Kg/mol	0,11098
	Coeficiente de	Difusão da solução livre (D _o)	m ² /s	1,34E-09
	dispersão	Difusão efetiva (D _e)	m ² /s	1,34E-10
		Tortuosidade (τ_o)		0,1
		Dispersividade longitudinal (α_L)	m	0,0015
		Dispersividade transversal (α_T)	m	0,00015
	Dissociação	Número de partículas (n _i)		2,601
	do sal	Fator de retardamento (R_d)		1,0
		Temperatura (T)	°C	60

Tabela 6. 2 – Dados da rocha usados na modelagem

6.2.1. Simulações em Poço Vertical

Caso I: Sem gradiente hidráulico nem químico. Este primeiro caso descreve o poço perfurado verticalmente, em um meio com tensões horizontais *in situ* isotrópicas. A atividade química e a pressão do fluido de perfuração foram escolhidas iguais às do fluido dos poros. O cenário descrito aparece ilustrado na Figura 6. 1 e os dados reunidos na Tabela 6. 3.

Figura 6. 1 - Configuração de carregamento, poço vertical

Tensões	Fluido	$\sigma_{\rm v}$	MPa	33
		$\sigma_{\rm H}$	MPa	30
		σ_h	MPa	30
		P_o	MPa	15
Poço		Inclinação	(0)	0
Fluido de	Tipo de solução	Água		
perfuração		Pressão	MPa	15
		Atividade química (a_w)		1,0
		Viscosidade	ср	1,0

As tensões para qualquer ponto sobre ou perto da parede do poço, descritas em termos da componente de tensão radial σ_r (a qual atua ao longo do raio do poço), da tensão tangencial σ_{θ} (atuando ao redor da circunferência do poço) e da tensão axial σ_z (paralela ao eixo da trajetória do poço), são apresentadas na Figura 6. 2. Como era de se esperar, quando o fluido de perfuração está em perfeito balanço com o fluido dos poros, não existe variação alguma da pressão de poros. Esta situação conserva constantes as tensões e deformações ao redor do poço ao longo do tempo. A Figura 6. 3 mostra o deslocamento radial (instantâneo) sofrido pela parede do poço devido à perfuração. O poço mantém o fechamento inicial ao longo do tempo.

Figura 6. 2 – Distribuição de tensões ao redor do poço quando $a_o = a_w, P_o = P_w$

Figura 6. 3 – Deslocamento radial da parede do poço ($a_0 = a_w, P_0 = P_w$)

Caso II: Sem gradiente hidráulico, com gradiente de concentração. Sob as mesmas condições *in situ* da Figura 6. 1, procedeu-se a simular o caso referente ao fluxo de fluido gerado pela exposição da rocha a um fluido de atividade química menor que a dos poros. A Figura 6. 4 mostra o comportamento da pressão de poros, quando utilizada uma solução salina com 35 w% de CaCl₂. A queda de pressão de poros é conseqüência do efeito osmótico, causado pelo contraste entre a atividade química do fluido dos poros e do fluido de perfuração. Esta diminuição da pressão de poros ao redor do poço, provoca o aumento da tensão efetiva e da resistência da rocha (Figura 6. 5), melhorando a estabilidade. A Figura 6. 6 mostra que, neste caso, a mudança da pressão de poros pela presença do gradiente de concentração, tem pouca influência na distribuição das tensões efetivas.

Figura 6. 4 – Distribuição da pressão de poros ao redor do poço para $a_w < a_o$, $P_o = P_w$

Figura 6. 5 – Mudança do estado de tensões devido à redução da pressão de poros

Figura 6. 6 - Tensões efetivas ao redor do poço

A Figura 6. 7 mostra que o poço continua fechando ao longo do tempo. Este deslocamento radial é levemente maior para os primeiros dois dias após a perfuração.

Figura 6.7 – Deslocamento radial da parede do poço

Caso III: com gradiente hidráulico, sem gradiente químico. Uma outra situação foi modelada estabelecendo uma condição de perfuração sobrebalanceada, com pressão do fluido de perfuração de 20 MPa, para o estado de tensões da Figura 6. 1. A atividade química do fluido dos poros e do fluido de perfuração foram consideradas iguais.

A Figura 6. 8 apresenta a distribuição da pressão de poros com o tempo. O fluido de perfuração, com pressão $P_w = 20$ MPa na parede do poço, entra em contato com o fluido dos poros e altera a pressão de poros original ($P_o = 15$ MPa). A pressão ao redor do poço varia ao longo do tempo até se estabelecer uma distribuição de pressão de poros permanente entre a parede e a formação.

Figura 6. 8 – Perfis de pressão de poros modelados considerando $a_w = a_o$

Como conseqüência do incremento da pressão de poros, as tensões efetivas sofrem uma redução que diminui a resistência (Figura 6. 9). Este processo provoca o incremento da relação ($\tau_{atuante}/\tau_{ruptura}$) ao redor do poço com o tempo, a qual, para este caso, é inferior a um, indicando que a região não chegou a plastificar (Figura 6. 10).

Figura 6. 9 - Tensões radiais, tangenciais e axiais efetivas

Figura 6. 10 – Evolução da relação $\left(au_{atuante} / au_{ruptura}
ight)$ na condição sobre-balanceada

Caso IV: com gradiente hidráulico e químico (variando α). Com a geometria do Caso III e mantendo a pressão exercida pelo fluido de perfuração ($P_w = 20$ MPa), foram modeladas situações envolvendo o efeito membrana. As seis simulações variando o coeficiente de reflexão (α), aparecem na Tabela 6. 4.

Elas foram efetuadas utilizando uma solução com 35 w/w% de cloreto de cálcio de viscosidade 1,90 cp, para uma temperatura de 60° C.

Simulação	Coeficiente de reflexão (<i>a</i>)
1	0,01
2	0,02
3	0,05
4	0,10
5	0,20
6	0,50

Tabela 6. 4 - Valores de coeficiente de reflexão adotados na análise do Caso IV

As Figura 6. 11, Figura 6. 12 e Figura 6. 13 mostram o perfil de dissipação da pressão de poros para diferentes valores de α . Pode se observar um retardamento no processo de difusão da pressão de poros conforme o coeficiente de reflexão aumenta. Uma comparação do efeito membrana para os cenários simulados pode também ser efetuada através da Figura 6. 14. Quanto maior o valor de α , o fluxo de fluido gerado pelo gradiente de concentração é maior (osmose química), reduzindo o processo de difusão de pressão.

Figura 6. 11 – Dissipação da pressão de poros para α = 0,01

Figura 6. 12 – Dissipação da pressão de poros para α = 0,10

Figura 6. 13 – Dissipação da pressão de poros para α = 0,20

Figura 6. 14 - Pressão de poros 10 dias após a perfuração

A penetração de massa de soluto no folhelho é uma outra situação que acompanha a interação rocha-fluido e acontece como conseqüência do processo advectivo e da difusão química. A Figura 6. 15 mostra a concentração de sal na proximidade da parede do poço crescendo com o tempo. Após 10 dias da perfuração, a quantidade de 30 Kg/m³ de soluto (2,94 w/w%), chegou até 160 mm para dentro na formação. Comparando este resultado com o obtido no caso unidimensional utilizado para estimar o tempo da análise no campo (Figura 5.10), observa-se que, para a condição aqui simulada, a quantidade de soluto que penetra a rocha é seis vezes maior do que no caso unidimensional.

Figura 6. 15 – Distribuição de soluto ao redor do poço para α = 0.01

As tensões efetivas radiais apresentadas na Figura 6. 16, mostram um aumento com o incremento do α . Para os dois cenários ilustrados ($\alpha = 0,20$ e $\alpha = 0,50$), observou-se que para tempos menores ($t \le 5$ min), as tensões efetivas tomam um valor negativo na parede do poço. A instabilidade numérica explica este fenômeno, já que a tensão total obtida na região (r/a) \le 1,10, apresentou oscilações que perturbaram o resultado das tensões efetivas.

Figura 6. 16 – Evolução da tensão radial efetiva para (a) α = 0.20, (b) α =0.50

Devido às diferenças na difusão da pressão de poros para cada α adotado, a relação ($\tau_{atuante}/\tau_{ruptura}$) é modificada. A melhoria do efeito membrana (dada pelo aumento do parâmetro α), diminui o valor desta relação ao redor do poço (Figura 6. 17).

Figura 6. 17 – Relação $\left(au_{atuante} / au_{ruptura}
ight)$ para t =10 dias

A Figura 6. 18 mostra que uma diminuição da relação $(\tau_{atuante}/\tau_{ruptura})$ não implica menores deslocamentos. Observa-se que após o fechamento inicial do poço, a parede continua se deslocando em função do valor do coeficiente de reflexão adotado. O efeito membrana obtido para $\alpha = 0,05$ mantém o deslocamento inicial da parede do poço, enquanto que o máximo coeficiente simulado ($\alpha = 0,50$) corresponde ao maior deslocamento obtido. Valores acima ou abaixo de $\alpha = 0,05$ promovem fechamento ou alargamento respectivamente. Estes resultados indicam que o efeito membrana pode reduzir ou promover o deslocamento radial da parede do poço.

Figura 6. 18 - Deslocamento radial da parede do poço

Caso V: com gradiente hidráulico e químico, tensões horizontais anisotrópicas (variando α). O processo de perfuração de um poço vertical sob estado de tensões anisotrópico (Figura 6. 19) foi depois analisado. A Tabela 6. 5 apresenta as simulações efetuadas.

Figura 6. 19 – Configuração de carregamento em poço vertical ($\sigma_h < \sigma_H$)

Simulação	Coeficiente de reflexão (<i>a</i>)
1	-
2	0,01
3	0,05
4	0,10

Tabela 6. 5 - Valores de coeficiente de reflexão adotados na análise do Caso V

A situação com tensões horizontais diferentes somada ao incremento do coeficiente de reflexão, tornou o problema altamente não linear, fazendo necessária a redução da faixa do tempo máximo de análise para t = 5 dias.

A Figura 6. 20(a), mostra o perfil de pressão de poros obtido para $\theta = 0^{\circ}$. A mínima pressão de poros obtida no curto prazo (t = 5 min), para os coeficientes de reflexão simulados, permanece constante (12 MPa), e existe um afastamento da curva de pressão de poros da parede do poço conforme o α diminui. Conseqüentemente, a menor pressão de poros que a rocha conseguiria desenvolver na região de $\theta = 0^{\circ}$, seria condicionada pelo alívio de tensões devido à perfuração

Na região ao redor de $\theta = 90^{\circ}$, a compressão que a rocha sofre leva à pressão de poros para um valor acima do experimentado para $\theta = 0^{\circ}$. Na Figura 6. 20(b), observa-se que, no curto prazo, a osmose gera uma forte queda da pressão de poros na região perto da parede do poço, a qual é acentuada com o incremento do α . Cinco dias depois de iniciado o processo de dissipação da pressão de poros, o perfil de menor pressão de poros corresponde ao maior valor de α simulado.

Figura 6. 20 – Distribuição da pressão de poros para (a) θ = 0°, (b) θ = 90°

As curvas que representam a relação $(\tau_{atuante}/\tau_{ruptura})$ para $\theta = 0^{\circ}$ e $\theta = 90^{\circ}$ aparecem na Figura 6. 21. Os maiores resultados obtidos correspondem à região de $\theta = 90^{\circ}$, onde acontece a maior compressão. No entanto, estes valores são inferiores a um, indicando que a região não plastificou. As famílias de curvas para cada zona, mostram que o incremento do α reduz o valor do fator de dano ao redor do poço.

Figura 6. 21 – Relação $\left(\tau_{atuante} / \tau_{ruptura} \right)$ para t = 5 dias

Os resultados de deslocamento radial apresentam uma taxa maior nas primeiras 12 horas, e nenhuma influência do efeito membrana para este tempo, nas duas regiões mostradas na Figura 6. 22(a) e (b). Os deslocamentos da parede obtidos neste caso são de uma ordem maior devido à condição de anisotropia. Observa-se que após o fechamento instantâneo inicial, o poço sofre uma diminuição do raio que ocorre onde $\sigma_{\rm H}$ encontra-se atuando ($\theta = 0^{\circ}$) e um alargamento do poço em $\theta = 90^{\circ}$, onde a tensão atuando é a horizontal menor.

Figura 6. 22 – Deslocamento radial da parede do poço

Caso VI: com gradiente hidráulico e químico (variando C). O efeito da variação da concentração de cloreto de cálcio no fluido de perfuração foi avaliado através do modelo da Figura 6. 23, mantendo o valor de α constante (α = 0,01). Os dados modificados para cada simulação aparecem na Tabela 6. 6.

Figura 6. 23 – Configuração de carregamento no poço vertical

Simulação	<i>C</i> (w/w%)	C (Kg/m ³)	$\mu_w(cp)$
1	-	-	1,00
2	20	235	1,00
3	21	249	1,04
4	22	263	1,08
5	25	305	1,20
6	30	380	1,52
7	35	460	1,90

Tabela 6. 6 – Dados relacionados com a concentração do fluido para cada simulação

As curvas de distribuição de massa de soluto obtidas para as diferentes concentrações de CaCl₂ adotadas estão ilustradas na Figura 6. 24. Elas têm um comportamento relativo à quantidade de soluto no fluido de perfuração: quanto maior o teor de sal, maior a entrada de soluto na rocha (Muniz, 2003; Simpson & Dearing, 2000). A entrada de soluto é registrada para distâncias menores do que 1.6 raios.

Figura 6. 24 – Distribuição de soluto ao redor do poço para diferentes concentrações de CaCl₂ (10 dias)

A Figura 6. 25 apresenta a distribuição de pressão de poros na parede do poço 10 dias após a perfuração, para alguns cenários simulados. À medida que diminui a concentração do fluido de perfuração, observa-se o afastamento da curva de pressão de poros da parede do poço.

Figura 6. 25 – Pressão de poros para diferentes concentrações de CaCl₂ (t = 10 dias)

A Figura 6. 26 mostra a evolução das tensões radiais efetivas para este caso. A redução da taxa de transmissão de pressão que traz o uso do sal, aumenta o valor das tensões efetivas, melhorando a resistência da rocha.

Figura 6. 26 – Tensão radial efetiva para diferentes concentrações de CaCl₂ (t = 10 dias)

O retardamento da difusão da pressão de poros com a inclusão do sal, diminui a relação $(\tau_{atuante}/\tau_{ruptura})$ na parede do poço. Neste caso, os teores de CaCl₂ adotados fornecem curvas muito próximas entre si. Este efeito da concentração está representado na Figura 6. 27.

A evolução do deslocamento radial da parede do poço é apresentada na Figura 6. 28. Os resultados obtidos para o fluido de perfuração com algum teor salino, mostram uma redução da taxa de deslocamento após o fechamento inicial sofrido pela rocha, quando comparadas com a curva sem uso do sal. Como observado na figura, o teor de sal promove alargamento ou fechamento do poço em função da sua concentração.

Figura 6. 27 – Relação $(\tau_{atuante} / \tau_{ruptura})$ para diferentes concentrações de CaCl₂ (*t* = 10 dias)

Figura 6. 28 - Deslocamento radial da parede do poço

6.2.2. Simulações em Poço Inclinado

O cenário de um poço inclinado foi simulado variando o coeficiente de reflexão e variando a salinidade do fluido de perfuração. As propriedades do material são mantidas iguais àquelas apresentadas na Tabela 6. 2. A Figura 6. 29 descreve o campo de tensões *in situ*, pressão de poros e geometria. Neste nível, as dificuldades na convergência obrigaram adotar valores de tolerância maiores, isto influenciou na qualidade de alguns resultados. A faixa de tempo máxima de análise foi de 5 dias.

Figura 6. 29 – Geometria e tensões in situ para o poço inclinado

Caso VII: com gradiente hidráulico e químico, anisotropia de tensões (variando α). Cinco simulações foram efetuadas variando a eficiência de membrana, como mostrado na Tabela 6.7.

Tabela 6. 7 – Valores de coeficiente de reflexão adotados na análise do Caso VII

Simulação	Coeficiente de reflexão (<i>a</i>)
1	-
2	0,01
3	0,10
4	0,20
5	0.50

Na Figura 6. 30 é apresentada a distribuição da pressão de poros para os cenários simulados. Sua dissipação é retardada pelo efeito membrana, e, no curto prazo (t = 5 min), tanto para $\theta = 0^{\circ}$ quanto para $\theta = 90^{\circ}$, a pressão de poros mínima varia com o coeficiente de reflexão.

Figura 6. 30 – Distribuição da pressão de poros para (a) $\theta = 0^{\circ} e$ (b) $\theta = 90^{\circ}$

A forte compressão da rocha ao longo de $\theta = 90^{\circ}$ produz um aumento da pressão de poros nesta região. À medida que este excesso é dissipado, a redução

da pressão de poros devido ao efeito membrana se intensifica. No entanto, o fluxo gerado pela osmose diminui com o tempo, e estabelece a difusão de pressão mostrada na Figura 6. 31.

Figura 6. 31 – Evolução da pressão de poros para α = 0.20

A Figura 6. 32 mostra a evolução da relação $(\tau_{atuante}/\tau_{ruptura})$ ao redor do poço, dez dias após a perfuração. O elevado nível de compressão ao longo de $\theta = 90^{\circ}$ leva à rocha para um dano permanente em $r/a \le 1,05$, o qual aparece indiferente à variação do α . Já fora da zona plastificada, o fator de dano diminui à medida que a eficiência de membrana aumenta. Na região de $\theta = 0^{\circ}$, onde a rocha não chegou a plastificar, o efeito membrana tem pouca influência.

Figura 6. 32 – Plastificação ao redor do poço para $\theta = 0^{\circ} e \theta = 90^{\circ} (t = 5 \text{ dias})$

A Figura 6. 33 mostra o deslocamento radial da parede do poço para 5 dias. Ao longo de $\theta = 0^{\circ}$, após o fechamento inicial, a parede continua se deslocando na direção do poço, sendo este de taxa maior para o caso sem a consideração físicoquímica. Nesta região, o efeito membrana reduz o deslocamento de maneira similar nos casos com $\alpha = 0,01$ e $\alpha = 0,10$. Para coeficientes de reflexão mais altos, o deslocamento torna-se maior, e para 5 dias, o deslocamento com $\alpha = 0,50$ é igual ao obtido no caso que não considera o efeito membrana. Um fato similar acontece ao longo de $\theta = 90^{\circ}$, onde o poço sofre alargamento depois do fechamento inicial (Figura 6. 33(b)). Nesta zona, os resultados obtidos com o coeficiente de reflexão de 0,01 e 0,10, mostram uma maior redução do deslocamento da parede do que com $\alpha = 0,20$ e $\alpha = 0,50$.

Figura 6. 33 – Deslocamento da parede do poço para (a) θ = 0°, (b) θ = 90°

Caso VIII: com gradiente hidráulico e químico, anisotropia de tensões (variando C). Por último, mantendo o coeficiente de reflexão constante (α =0,01) e a geometria do Caso VIII, foram simuladas situações variando a concentração do fluido de perfuração (Tabela 6. 8).

Simulação	<i>C</i> (w/w%)	C (Kg/m ³)	$\mu_w(cp)$
1	-	-	1,00
2	5	52	0,68
3	10	109	0,76
4	20	235	1,00
5	30	380	1,52
6	35	460	1,90
7	40	543	2,44

Tabela 6.8 – Concentração do fluido para cada simulação

Na Figura 6. 34 é apresentada a distribuição da pressão de poros para os cenários simulados. Comparando as diferentes curvas, observa-se que o processo de difusão da pressão é muito mais rápido para o caso sem sal, quando comparado com a solução salina. Ao longo de $\theta = 90^{\circ}$ (Figura 6. 34(b)), 5 minutos após a perfuração, as diferentes concentrações usadas tem a mesma influência na redução da dissipação da pressão de poros.

A Figura 6. 35 mostra a evolução da relação $(\tau_{atuante}/\tau_{ruptura})$ ao redor do poço, dez dias após a perfuração. Ao longo de $\theta = 90^{\circ}$, a salinidade não tem influencia alguma na zona com dano permanente. Fora dela, o sal contribui na redução do fator de dano para uma estreita região $(1,05 \le r/a \le 1,30)$. Ao longo de $\theta = 0^{\circ}$, onde a rocha não chegou a plastificar, o sal tem influência praticamente nula.

Figura 6. 34 – Influência do teor de sal na dissipação da pressão de poros para (a) $\theta = 0^{\circ}$, (b) $\theta = 90^{\circ}$

Figura 6. 35 – Área plastificada ao redor do poço para θ = 0° e θ = 90° (*t*= 5 dias)

A Figura 6. 36 apresenta os deslocamentos radiais para este caso. Observase que a salinidade abaixo de 30 w/w% de CaCl₂, tem uma influência muito pequena nos resultados. A situação obtida com uma concentração de 40 w/w% de CaCl₂, mostra uma notória redução do deslocamento horas depois da perfuração.

Figura 6. 36 – Deslocamento radial da parede do poço para (a) θ = 0°, (b) θ = 90°

6.3. Discussão dos Resultados Obtidos

Com base nos casos modelados, pôde-se observar que os parâmetros controláveis que influenciam o estado de tensão são o tipo de fluido de perfuração, o seu peso e a trajetória do poço.

As diferenças entre os cenários simulados indicam a importância da consideração físico-química no comportamento do poço. O potencial químico entre o fluido dos poros e o fluido de perfuração constitui um mecanismo de condução da água e íons que altera o perfil de pressão de poros e modifica o estado de tensões efetivas na vizinhança do poço. Observou-se que a quantidade de soluto entrando na formação cresce com o tempo. As curvas de migração de soluto na parede do poço mostram 1,6 r/a como o raio máximo de penetração para os casos analisados.

Foi observada a existência de uma faixa de valores de eficiência de membrana e concentração do fluido de perfuração dentro da qual, o poço experimenta condições benéficas de pressão de poros, tensão e/ou deslocamento. Fora destes limites, a estabilidade do poço pode resultar afetada pelo incremento de deformações e desenvolvimento de tensões que aumentam a área plastificada, entre outros. A geometria e o estado de tensões *in situ* influenciam na resposta da rocha a cada parâmetro adotado.

A malha utilizada nas simulações foi escolhida com o intuito de permitir a obtenção dos resultados em um tempo moderado, e, na sua vez, alcançar a convergência. Conseqüentemente, as respostas obtidas contêm oscilações numéricas que dificultaram a interpretação de algumas situações. Por outro lado, devido ao aumento da não-linearidade com a consideração físico-química e uma geometria mais complexa, algumas simulações apresentaram problemas de convergência. Ficou estabelecido que altos valores do coeficiente de reflexão ($\alpha > 0,5$), dificultam enormemente a convergência do problema numérico, mesmo para um crescimento lento dos incrementos de tempo.